

Considerations for Dryland Wide-Row Cotton Production

Jan 10, 2024

Randy Boman, Ph.D.
Cotton Agronomics Manager
Windstar, Inc.
580-481-4050

This meeting will cover various important topics for growers interested in or considering dryland wide-row cotton production. Attendees are encouraged to direct questions to speakers during the meeting.

Speakers include:

- Randy Boman Cotton Agronomics Manager, Windstar, Inc. (Introduction, Overview, Discussion Moderator and Wrap-Up)
- Shawn Wade Plains Cotton Growers (USDA-FSA and Crop Insurance Issues)
- Will Keeling Texas A&M AgriLife Extension, Lubbock Center (Budget Considerations)
- Kris Verett and R.N. Hopper South Plains growers with multi-year widerow cotton experience
- Will conclude with a gratis lunch, which will be served at 12:00 pm.

Meeting Objectives

- We are not trying to change your mind about how you raise cotton
- Provide participating producers with relevant thought provoking information
- We are only providing some high quality and timely background information to those who have been considering change on their operations
- Introduce growers to potential resource contacts with subject matter expertise in critical areas

Wide-Row Cotton

- Can be defined as 60, 80, or perhaps 90-inch row cotton
 - e.g. 60-inch = plant 1 skip 1 in 30-inch rows,
 - Therefore 80-inch = plant 1 skip 1 in 40-inch rows
- As with any significant change in farming operation, one should seriously consider many factors
- Wide-Row cotton is really a system
- This system consists of
 - Agronomic considerations (what happens to the yield and quality of the cotton harvested)
 - FSA / Crop Insurance considerations (substantial and can be difficult to comprehend)
 - Economics (can one reduce input costs, and if so, what can be the potential consequences? Can we "manage the skip" to omit certain crop inputs?)
 - Experience is the best teacher

Agronomics of Wide-Row Production is Poorly Understood in Our Region

- We are unaware of any high-quality replicated scientifically valid data IN OUR REGION that compares yield and quality response to 60 or 80 inch rows vs. solid planted cotton
 - It is therefore scientifically poorly understood but anecdotal information is accumulating
- Some growers have been evaluating this system in our region, mostly based on Australian data and experiences (different situation)
- Decades ago, prior to the 1996 Freedom to Farm Act being passed, skip-row production was observed across a large number of dryland cotton acres
- The skip was considered "set aside acres" and was provided a payment by USDA-ASCS offices
- This was removed in the Freedom to Farm Act

Agronomics of Wide-Row Production is Poorly Understood in Our Region

- Another consideration compared to decades ago, is the cost of transgenic seed vs. conventional seed
- Seeding rates were typically extreme prior to the advent of expensive transgenic seed
- The objective for growers was to "get a stand" and inexpensive seed enabled that
- Transgenic seed costs are now among the most expensive inputs that growers have to face (other than harvesting/ginning).
- Wide-row or even skip-row planting patterns can reduce seed planted on a per-acre basis, and perhaps other inputs if the "skip is managed"

- 3 replicates
- Plot size 16 40-inch rows x ~250 ft
- John Deere MaxEmerge vacuum planter settings changed to plant 2, 4, 6 seed/row-ft
- 2x1 pattern established by plowing out rows as necessary shortly after emergence each year

- 3 seeding rates used
- 2, 4, 6 seed/row-ft
- Once skips established, had LAND-ACRE seeding rates of:
 - 2x1 skip: 17,424; 34,848; and 52,272
 - Solid: 26,136; 52,272; 78,408
- 2003-2005 AFD 3511R
- 2006-2009 changed to FiberMax 9058F (lost 2006)

Uniform Management

- This project was fertilized and managed uniformly across both skip row and solid planting patterns.
- NO COVER
- No attempt was made to manage the blank or skip row in terms of potential reductions in inputs.
 - Fertilizer, insecticide, herbicide, harvest aid, etc.

Timely Project Management

- For the duration of the project, no substantial stand losses were encountered due to environmental or mechanical damage.
- Wind erosion control practices were timely, accurate, and effective.

- Stripper harvested center 8 rows of each plot
 - 2x1 6 planted, 2 skips (have to add in 1 more skip row for land acre conversion)
 - Solid 8 planted
- Stripper dumped into Crust Buster weigh wagon
- Grab samples taken for each plot
- Ginned at Texas A&M AgriLife Research and Extension Center at Lubbock
- Lint samples submitted to Texas Tech University Fiber and Biopolymer Research Institute for HVI analysis

- Gross loan values across ALL YEARS were calculated by multiplying lint yields by the 2009 CCC loan chart for the HVI values obtained
- Seed value was set at \$160/ton
- Ginning cost was set at \$3/cwt of bur cotton
- All yield and value data converted to <u>LAND-ACRE</u> basis
- Net value per land acre was determined using combined lint and seed values, minus ginning costs and 2009 seed and technology fee costs (for FiberMax 9058F)

 Land-acre basis seed and technology fee costs based on 2009 pricing for FiberMax 9058F were:

Bag Price would have been \$255/bag for 220K seed Or \$288/bag for 250K seed

2 seed/row-ft	17,424	\$20.12	
4 seed/row-ft	34,848	\$40.24	
6 seed/row-ft	52,272	\$60.35	

 Land-acre basis seed and technology fee costs based on 2009 pricing for FiberMax 9058F were:

 Solid planting pattern: 	Seed/land acre \$/acre		
2 seed/row-ft	26,136	\$30.18	
4 seed/row-ft	52,272	\$60.35	
6 seed/row-ft	78,408	\$90.53	
2x1 skip row pattern:			
2 seed/row-ft	17,424	\$20.12	
4 seed/row-ft	34,848	\$40.24	
6 seed/row-ft	52,272	\$60.35	

- 2003 fair moisture year
 - 353 lb/land acre average
- 2004 good moisture year
 - 451 lb/land acre average
- 2005 good moisture year, but yields lower than potential moisture
 - No N sidedressing, 312 lb/land acre average
- 2006 drought year; utility of trial compromised
- 2007 outstanding year
 - 719 lb/land acre average
- 2008 tough year, drought early, some rainfall late
 - 343 lb/land acre average
- 2009 good precipitation early, no rainfall in August, early September
 - 346 lb/land acre average

- Ben Mullinix, Experimental Statistician at Texas A&M AgriLife Research and Extension Center at Lubbock analyzed the dataset
- Data for 2003-2009 (excluding 2006) were combined using PROC MIXED in SAS 9.1 for Windows
- Cultivar, Year(Cultivar) and Replicate(Cultivar*Year) were considered random effects
- Least squares means are reported
- t-test used for mean separation

Table 1. Six-year least squares means of agronomic and economic results of the dryland seeding rate by planting pattern trials (lint yield and net value expressed on a land-acre basis), Lamesa – AG-CARES 2003-2009.

Treatment	Lint yield	Loan value	Net value††	Micronaire	Staple
	lb/acre	\$/lb	\$/acre	units	32nds inch
Solid planting pattern					
2 seed/ft (26,136/acre with \$30.18/acre cost)	420	0.5336	207.94	4.1	34.9
4 seed/ft (52,272/acre with \$60.35/acre cost)	420	0.5169	170.90	4.0	34.5
6 seed/ft (78,408/acre with \$90.53/acre cost)	393	0.5201	127.59	4.0	34.2
2x1 skip row planting pattern					
2 seed/ft (17,424/acre with \$20.12/acre cost)	435	0.5429	230.60	4.2	35.2
4 seed/ft (34,848/acre with \$40.24/acre cost)	433	0.5332	205.39	4.1	35.2
6 seed/ft (52,272/acre with \$60.35/acre cost	424	0.5267	176.65	4.1	34.9
Mean	421	0.5289	186.51	4.1	34.8
Difference of least squares manns			Dw > 141		
Differences of least-squares means			Pr > t		
2 seed/ft 2x1 skip (17,424) vs. 2 seed/ft solid (26,136)	NS	NS	*	NS	NS
2 seed/ft 2x1 skip (17,424) vs. 6 seed/ft solid (78,408)	*	*	*	†	*
2 seed/ft solid (26,136) vs. 4 seed/ft solid (52,272)	NS	*	*	NS	NS
2 seed/ft solid (26,136) vs. 6 seed/ft solid (78,408)	†	t	*	NS	*
4 seed/ft solid (52,273) vs. 6 seed/ft solid (78,408)	t	NS	*	NS	NS
2 seed/ft 2x1 skip (17,424) vs. 4 seed/ft 2x1 skip (34,848)	NS	NS	*	NS	NS
2 seed/ft 2x1 skip (17,424) vs. 6 seed/ft 2x1 skip (52,272)	NS	*	*	NS	NS
4 seed/ft 2x1 skip (34,848) vs. 6 seed/ft 2x1 skip (52,272)	NS	NS	*	NS	NS
4 seed/ft solid (52,272) vs. 6 seed/ft 2x1 skip (52,272)	NS	NS	NS	NS	NS

AGCARES 2003-2009 Dryland Seeding Rate x Planting Pattern Lint Yield / Land Acre

AGCARES 2003-2009 Dryland Seeding Rate x Planting Pattern 6-Year Mean Lint Yield / Land Acre

AGCARES 2003-2009 Dryland Seeding Rate x Planting Pattern Loan Value (All Years Adjusted to 2009 Loan Chart)

AGCARES 2003-2009 Dryland Seeding Rate x Planting Pattern 6-Year Mean Loan Value (All Years Adjusted to 2009 Loan Chart)

AGCARES 2003-2009 Dryland Seeding Rate x Planting Pattern 6-Year Mean Micronaire

AGCARES 2003-2009 Dryland Seeding Rate x Planting Pattern 6-Year Mean Staple

2 x 1 and Solid Planting Patterns Seed Planted / Land Acre vs. 6-Yr Mean Net Value After 2009 FM 9058F Seed and Tech Fees / Land Acre

2 x 1 and Solid Planting Patterns Seed Planted / Land Acre vs. 6-Yr Mean Net Value After 2009 FM 9058F Seed and Tech Fees / Land Acre

	Seed/ land acre	Seed & tech fees (\$/acre)				
	2 x 1 S	kip Row				
2	17,424	20.12				
4	34,848	40.24				
6	52,272	60.35				
Solid						
2	26,136	30.18				
4	52,272	60.35				
6	78,408	90.53				

Seed per land acre (number)

Conclusions

- When comparing the lowest seeding rate (2 seed/ft) to the highest seeding rate (6 seed/ft), the highest seeding rate had a greater negative effect on lint yield and net value for the solid planting pattern than for the 2x1 skip row pattern.
- In terms of net value/acre, seeding rate had the greatest effect regardless of planting pattern due to higher seed and technology fee costs.

Conclusions

- This project was fertilized and managed uniformly across both skip row and solid planting patterns.
 - herbicides, insecticides, harvest-aid chemicals
- It did not include evaluation of potential reduced input costs by not fertilizing, spraying, etc. the skip row.
- If these potential input savings on the skip row could be realized, cost reductions favoring skip row production are possible.

Conclusions

- We had been planting about 3.0-4.0 seed/ft in solid-planted 40-inch rows in AG-CARES dryland projects.
- Based on this work, it appears that somewhat fewer than that will not adversely affect potential profitability over the long term, assuming NO STAND LOSS due to weather, etc.
- Knowing seed quality and utilizing effective seed treatments are critical, and potential stand losses due to weather and sand fighting practices should be considered.

Considerations for Dryland Wide-Row Cotton Production

Jan 10, 2024

Randy Boman, Ph.D.
Cotton Agronomics Manager
Windstar, Inc.
580-481-4050

